Double Fortification of Salt with Iron and Iodine

Supervisor

Prof. Dr. Faqir Muhammad Anjum

Student name

Saira Sultan

2009-ag-1179

M.Sc(Hons)FT

2nd semster

Father's name

Sultan Muhammad Sadiqui

Malnutrition

• "Pathological state resulting from relative or absolute deficiency of one or more essential nutrients"

(Hawkesworth, 2009)

Micronutrient Malnutrition

Loss of 1.5 million lives per year

(Fiedler, 2009)

Common among the children

(Caulfield et al., 2006)

Malnutrition in Pakistan

- Very high level of malnutrition
- Annual GDP loss: 3-4%

(USSCN, 2008)

- Undernourished: 24 %
- 37.5 million people

(FAO, 2008)

Objectives

 To improve the status of Iron and Iodine our population

To improve the Iron and Iodine status specifically in target groups

Recommended Daily Allowance (RDA) for Iron

Age group	RDA (mg/day)
0-6 months	0.27
7-12 months	11
1-8 years	7-10
9-13 years	8
14-18 years (males)	15
14-18 years (females)	18

19-50 years (males)	8
19-50 years (females)	18
Over 50 years	8
Pregnant women	27
(of all age)	
Lactating women	10
(14-18 years)	
Lactating women	9
(over 19 years)	(Paul et al., 2004)

Recommended Daily Allowance for Iodine

Age group	RDA (µg/day)
0-6 months	110
7-12 months	130
1-8 years	90
9-18 years	120
19 and over	150
Pregnant women	220
Lactating women	290

Iodine

- Important for thyroid function
- Iodine deficiency may results
 - > Impaired cognitive development
 - > Hypothyroidism
 - > Congenital abnormalities
 - > Cretinism
 - > Goiter

(WHO and UNICEF, 2007)

Iron

- Important for
 - > Oxygen transport
 - > Transport medium for electron
 - > Part of enzymes
- Deficiency may result in
 - > Anemia
 - > Impaired cognitive performance
 - > Increased maternal and child mortality

(Brownlie, 2002)

Salt Fortification

Salt is selected for fortification because

- > Large scale consumption
- > Regular consumption
- > Constant amount
- > Not related to socio-economic status

(Caulfield et al., 2006)

Methods of Salt Fortification

Spray mixing

Dry mixing

(Ranganathan, 2007)

Criteria for Fortificant Compound

- No discoloration
- No segregation
- No added flavor or odor
- Nutritionally available
- Economically feasible

(Andersson et al., 2008)

Iodine Compounds

Potassium iodide

Potassium iodate

Calcium iodate

(Diosady, 2002)

Iron Compounds

- Ferrous ascorbate
- Ferrous fumerate
- Ferrous succinate
- Ferrous gluconate
- Ferrous sulfate.7H20
- Ferrous sulfate
- Ferric pyrophosphate

(Hurrell, 2002; Swain et al., 2003)

Stabilizing Compound

Sodium hexametaphosphate

Sodium acid sulphate

Orthophosphoric acid

(Diosady, 2002)

Problems in Stability

- Bioavailable form of iron: ferrous
- Ferrous oxidize to ferric
- Oxidation is accelerated by
 - Alkaline conditions
 - Oxidizing agents
 - ✓ High humidity
 - High temperature

(Diosady, 2002)

Oxidation results in

- Low bioavailability
- Poor taste
- Unacceptable discoloration
- Loss of iodine

(Diosady, 2002)

Solution

Microencapsulation

(Yao *et al.*, 2010)

Product Analysis

Iron determination

Atomic absorption spectrometry

Iodine concentration

Sandell-kolthoff method

(Andersson et al., 2008)

Moisture

Gravimetric method

Color

Colorimetric

(Andersson et al., 2008)

References

- Andersson, M., T. Prashanth, M. Sumithra, B.G. Ramakrishna, V.K. Anura, F.H. Richard and B.Z. Michael. 2008. Dual fortification of salt with iodine and iron: a randomized, double-blind, controlled trial of micronized ferric pyrophosphate and encapsulated ferrous fumarate in southern India. Am. J. Clin. Nutr. 88(5):1378-1387.
- Brownlie T., U. Virginia, S.H. Pamela, G. Christina and D.H. Jere. 2002. Marginal iron deficiency without anemia impairs aerobic adaptation among previously untrained women. Am. J. Clin. Nutr. 75(4):734–742.
- Caulfield L.E., S.A. Richard, J.A. Rivera, P. Musgrove. 2006. Stunting wasting and micronutrient deficiency disorders. In: D.T. Jamison, J.G. Breman, A.R. Measham, G. Alleyne, M. Claeson, D.B. Evans, P. Dha, Mills A, Musgrove P. (editors) Disease Control Priorities in Developing Countries, 2nd ed. Washington, DC: Oxford University Press and World Bank, pp. 551-567.

- Diosady L.L., J.O. Alberti, K. Ramcharan, and M.G. Venkatesh. 2002. Iodine stability in salt double-fortified with iron and iodine. Food Nutr. Bull. 23(2):196-207.
- FAO/WHO. 1994. Codex Alimentarius, Volume 4, 2nd edition.
- FAO. 2008. Food and Agriculture Organization. httpwww.google.com.pkurlsa=t&source=web&ct=res&cd=1&ved=0CAkQ FjAA&url=ftp%3A%2F%2Fftp.fao.org%2Fcodex%2Fccnfsdu30%2Fnf30 _09e.pdf&rct=j&q=fao+2008+malnutrition+pakistan+reference&ei=W6Td S4TwAoStrAfv3LiICA&usg=AFQjCNHEXOBsVIVMi.docx. (Accessed May 2, 2010).
- Fiedler J.L. 2009. Strengthening household income and expenditure surveys as a tool for designing and assessing food fortification programs, International Household Survey Network, IHSN Working Paper No. 001.

- Hawkesworth S. 2009. Multidisciplinary approaches to nutritional problems. Exploiting dietary supplementation trials to assess the impact of the prenatal environment on CVD risk. Proc. Nutr. Soc. 68(1):78–88.
- Hurrell R.F. 2002. How to ensure adequate iron absorption from iron-fortified food Nutr. Rev. 60 (2):7–15.
- Paul I., R. Elaine and R. Don. 2004. Nutrition. 2nd ed. Jones Bartlett publishers, Sudbery Massachusetts, London.

- Ranganathan E., G.K. Madhu, K. Muddepaka, N.V.B. Ginnela, V.R. Mendhu, V. Kamasamudram and S. Bhattriprolu. 2007. Stability of iodine in salt fortified with iodine and iron. Food Nutr. Bull. 28(1):109-115.
- Swain J.H., S.M. Newman and J.R. Hunt. 2003. Bioavailability of elemental iron powders to rats is less than bakery-grade ferrous sulfate and predicted by iron solubility and particle surface area Nutr. 133:3546–3552.
- USSCN. 2008. United Nations Standing Committee on Nutrition. fifth report on the world nutrition situation, Nutrition for Improved Development Outcomes, March, 2008.
- World Health Organization. 2007. Reducing Salt intake in populations. Report of a WHO Forum and Technical Meeting. Geneva, World Health Organization.

- Wegmüller R., M.B. Zimmermann, R.F. Hurrell. 2003. Dual fortification of salt with iodine and encapsulated iron compounds: stability and acceptability testing in Morocco and Côte d'Ivoire. J. Food Sci. 68:2129–35.
- Wegmüller R., C. Fatoumata, B.Z. Michael, A. Pierre and F.H. Richard. 2006. Salt Dual-Fortified with Iodine and Micronized Ground Ferric Children in Pyrophosphate Affects Iron Status but Not Hemoglobin Côte d'Ivoire. J. Nutri. 136(2):1814-1820.
- Yao O.L., L. Levente, S. Diosady, H. Annie and R. Wesley. 2010. Iodine stability in iodized salt dual fortified with microencapsulated ferrous fumarate made by an extrusion-based encapsulation process. J. Food Eng. 99(2): 232-238.

