## Documentation of ethno-botanicals and evaluation for their anthelmintic activity in Cholistan, Pakistan

Muhammad Asif Raza (PhD Scholar)

Supervisors:

Prof Dr. Eva Schlecht Prof Dr. Muhammad Younas

ICDD, Graduate School of Socio-Ecological Research for Development University of Kassel, Germany

June 28, 2010



#### **Outline**

- 1. Introduction
- 2. Problem statement
- 3. Materials & Methods
- 4. Statistical analysis
- 5. Time plan
- 6. Possible outcomes



#### 1. Introduction

- In Pakistan almost 2000 medicinal plant species exist but very few exploited
- Country's medicinal herbs requirement (90%) is met through import
- About 50% of the population cured using traditional medicines
- More than 40,000 traditional herbal practitioners (Anonymous, 1999-2002)



- Problems due to chemotherapeutic control practices are,
  - Side effects
  - Resistance development
  - Chemical residues
  - Toxicity problems
  - Un-economical
  - Non-adaptability of drugs
  - Non-availbity in remote areas
- These considerations have revived interest in exploiting the potential of medicinal plant drugs which could be safer & not expected to produce residue problems.



#### 2. Problem Statement

 In Pakistan parasitism is one of the major menace for livestock, causing obstacles in the development of profitable livestock industry (Khan et al., 1989; Sajid et al., 1999)

• Prevalence of helminths in ruminants 25-92% in different areas of Pakistan (Iqbal et al., 1993; Raza et al., 2007).



- Synthetic anthelmintics are
  - Expensive
  - Unavailable to farmers in rural areas
  - Drug resistance
  - Food residues
  - Environmental pollution



#### **Possible Solution**

 Pakistan has large list of medicinal plants but not using these

Need screening the medicinal plants for their anthelmintic activity



#### **Study Site**

Cholistan (Rohi) spreads in 3 districts of Punjab viz;
Bahawalpur, Bahawalnagar and RY Khan & covers an area of 66,55,360 acres (10399 Sq. miles)

• Temperature 6-50 °C

Rainfall 128-175 mm

Ground water mostly brackish, 25-90 m deep

Sweet water zones hakra bed, canal seepage zones

Human population 0.155 million

Livestock population 1.6 million



- Livestock husbandry is very important in the community & traditionally wealth is being assessed based on the number of livestock.
- Plants of this desert have great ethno-botanical importance.
- A little work has been done



#### **Map of Study Area**





#### 3. Materials and Methods

- 3.1. Base-line survey for the documentation of medicinal plants
- 3.2. Prevalence of Helminthes
- 3.3. Evaluation of anthelmintic activity



### 3.1. Baseline survey for the documentation of medicinal plants

- A well-structured questionnaire to interview 100 stockholders/ farmers and 20 local healers.
- Areas/ villages selected for baseline survey
  - 1. 148 DB
  - 2. 183 DB
  - 3.423 DB
  - 4. 335 HR
  - 5. 123 DNB
- Documented plants will collect & identify by Botanist.



#### **Some Medicinal Plants**







Ficus religiosa L. (Pipal)

Calotropis procera (L) (Aak)

Convolvulus arvensis (One wehri)



#### 3.2. Prevalence of helminthes

#### **Sample Collection**

 Faecal samples (200) of sheep & goat will collect in sterile polythene bags directly from rectum of each animal

#### Faecal Examination

- Direct technique
- Indirect technique (Floatation technique)



#### **Direct technique**

- 1 g faecal sample mix well in a drop of water
- Examine under microscope by placing a drop of suspension on slide with cover slip
- At least 3 direct smears should examine from each sample



#### **Indirect technique**

- 5 g faeces mix in 30-50 ml water
- Sieve to remove course material
- Allowed to sediment for half an hour
- Pour off supernatant, mix sediment in saturated NaCl solution
- Centrifuge at 1000 rpm for 2 minutes
- Upper 0.1 ml suspension transfer to a glass slide
- Examine under microscope at 10 X for the presence of helminth eggs



#### 3.3. Evaluation of anthelmintic activity

#### **Collection of Plant materials**

- Plant materials will be collected from Cholistan desert
- Sample will be dried at about 50-52°C
- 500 g of the each plant material will be ground first to pass a 2 mm screen



#### **Methanolic extract preparation**

- Plant material dried in shade
- Ground to powder in an electric mill,
- Stored in cellophane bags at 4°C.
- Powdered plant extracted with Methanol in a Soxhlet's apparatus (Asuzu and Onu, 1994)
- Crude methanolic extract (CME) stored at 4°C until used.



In vitro anthelmintic activity

#### Two techniques

- Egg hatch test
- Larval development test



#### How to recover eggs of helminthes?

- Mix 50 g faeces in 50 ml water with electric mixer
- Sieve & mix 100 ml saturated NaCl solution
- Pour into shallow tray having 4 cm depth
- Place a plastic sheet on mixture
- Egg adhere to floating plastic sheet due to less specific gravity
- Remove it after 15 minutes & wash with water to collect eggs
- Number of eggs will be estimated by McMaster technique (Soulsby, 1982)



#### Egg hatch test (Coles et al. 1992)

- 0.2 ml suspension containing eggs will be distributed in a 24-flat-bottomed microtitre plate
- Mix with different concentrations of plant extract i.e., CME.
- Control plates will contain the water
- Eggs incubated in this mixture for 48 h at 25°C
- One drop of Lugol's iodine solution will be added
- Eggs and first-stage larvae (L1) in each plate will be counted



#### Larval development test (Ademola et al., 2004)

- In a test tube add 150 μl of nutritive medium (Hubert and Kerboeuf, 1992) to 500 μl of egg suspension containing approximately 100 eggs
- Cover & place it in an incubator at 25°C for hatching of the eggs to L1 in 48 h
- Add CME at different concentrations to L1
- After 7 days, larvae will be counted as living and dead third stage larvae (L3)



#### 4. Statistical Analyses

All data collected will be analyzed with appropriate statistical method



#### 5. Time plan

| Activity                        | Time needed | Details                                                                    |
|---------------------------------|-------------|----------------------------------------------------------------------------|
| Preparation                     | 2 ½ months  | Literature collection, secondary data collection                           |
| GPS training                    | 15 days     | GPS training University of Kassel, Germany (April 2010)                    |
| Field work                      | 8 months    | Base-line survey, collection of plants and prevalence of helminthes        |
| Laboratory work                 | 8 months    | Preparation of plant extracts and in vitro evaluation.                     |
| Data evaluation and publication | 1 year      | Statistical analyses of data, evaluation, publications and thesis write up |



#### 6. Possible Outcomes

- Natural resources in the form of plants can be utilized for the treatment of diseases
- Ethno-botanicals are economical, easily available and helpful for poor peoples of Rohi
- Treatment of helminths instead of purchasing/importing costly anthelmintic medicines can be possible
- Help in preserving the natural plant fauna of Cholistan
- Provoke further pharmacological and phytochemical research on medicinal plants



# 

